3rd INTERNATIONAL PEDIATRIC

NONINVASIVE VENTILATION CONFERENCE

Necker university hospital

Paris - France November 7th & 8th 2019

Interfaces for NIV and CPAP in children

Alessandro Amaddeo

Pediatric noninvasive ventilation and sleep unit Paris Descartes University EA 7330 VIFASOM (Vigilance Fatigue Sommeil et Santé Publique) Necker university hospital, Paris, France

Interfaces for NIV in children

- The different types of interfaces
- Advantages and side effects
- How choose the optimal interface ?
- In practice...

Nasal masks

MiniMe vented nasal mask

Journal of Clinical Sleep Medicine

pii: jc-00349-13 http://dx.doi.org/10.5664/jcsm.4030

Evaluation of a New Pediatric Positive Airway Pressure Mask

Clete A. Kushida, M.D., Ph.D., F.A.A.S.M.¹; Ann C. Halbower, M.D.²; Meir H. Kryger, M.D., F.A.A.S.M.³; Rafael Pelayo, M.D., F.A.A.S.M.¹; Valerie Assalone, R.N.³; Chia-Yu Cardell, RPSGT¹; Stephanie Huston, B.S.²; Leslee Willes, M.S.⁴; Alison J. Wimms, M.Sc.⁵; June Mendoza, B.S.⁵

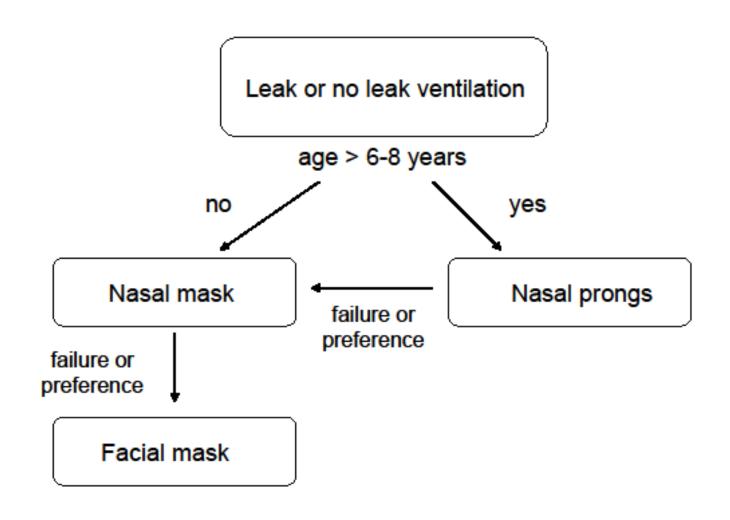
Pixi nasal vented mask

Nasobuccal mask

Nasobuccal masks

Nasal prongs

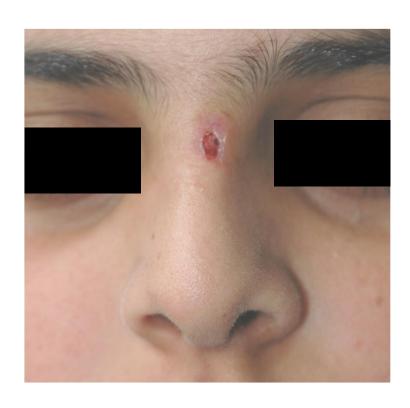
Nasal interfaces for infants



Interfaces for NIV in children

- The different types of interfaces
- Advantages and side effects
- How choose the optimal interface ?
- In practice...

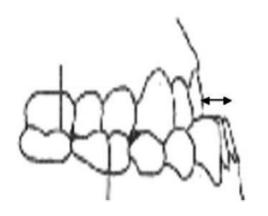
Long-term non-invasive ventilation in children


Alessandro Amaddeo, Annick Frapin, Brigitte Fauroux

	Advantages	Disadvantages	Side-effects
Nasal mask	Small internal volume; large choice of different industrial models	Not usable in case of mouth leaks	Pressure sores, eye irritation if leaks, facial deformity
Nasobuccal mask	Prevents mouth leaks	Large volume; risk of inhalation of gastric content in case of gastro-oesophageal reflux; impairs communication and vocalisation; increased aerophagia	Pressure sores, eye irritation if leaks, facial deformity
Total face mask	Prevents mouth leaks	Larger volume than nasobuccal mask; risk of inhalation of gastric content in case of gastro-oesophageal reflux; impairs communication and vocalisation; increased aerophagia	Pressure sores, facial deformity
Nasal pillows	Small and light; no pressure sores	Not usable in case of mouth leaks	Nasal irritation
Mouthpiece	Small and light; no pressure sores; can be used intermittantly	Not useable during sleep	None

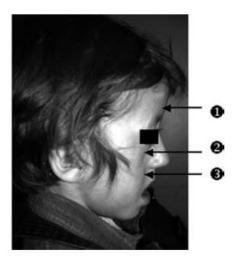
Lancet Respir Med 2016

Published Online July 13, 2016 Brigitte Fauroux Jean-François Lavis Frédéric Nicot Arnaud Picard Pierre-Yves Boelle Annick Clément Marie-Paule Vazquez


Facial side effects during noninvasive positive pressure ventilation in children

Brigitte Fauroux Jean-François Lavis Frédéric Nicot Arnaud Picard Pierre-Yves Boelle Annick Clément Marie-Paule Vazquez

Facial side effects during noninvasive positive pressure ventilation in children



Rétromaxillie

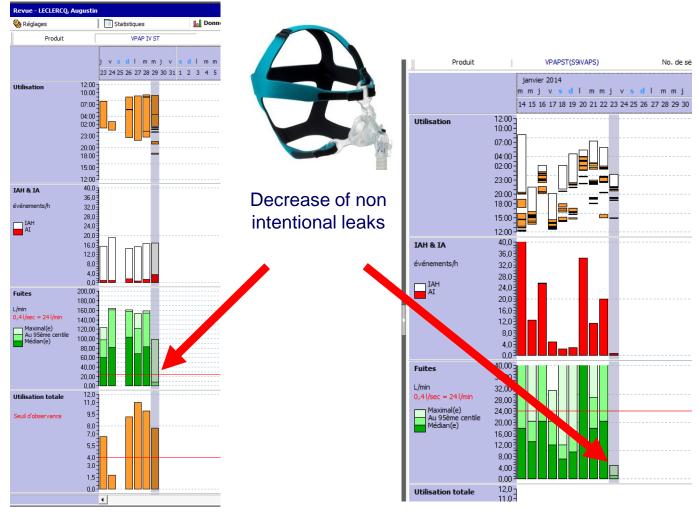
Aplatissement facial

Limits of interfaces

- No nasobuccal masks for young children & infants
- Skull and facial deformity: inadequation between mask and headgear
- Pressure of the headgear: ex. posterior distraction

Interfaces for NIV in children

- The different types of interfaces
- Advantages and side effects
- How choose the optimal interface ?
- In practice...


How choose the optimal interface?

- Factors guiding the interface choice:
 - patient's age (weight)
 - facial (and skull) anatomy (headgear +++)
 - mouth breathing, nasal permeability
 - ventilatory mode (± vented interface)
 - patient's autonomy (neuromuscular patients)
 - patient's comfort (unintentional leaks)
 - patient's tolerance (skin injury, facial deformity)

Reduction of non intentional leaks with an appropriate nasal mask

Interfaces for NIV in children

- The different types of interfaces
- Advantages and side effects
- How choose the optimal interface ?
- In practice...

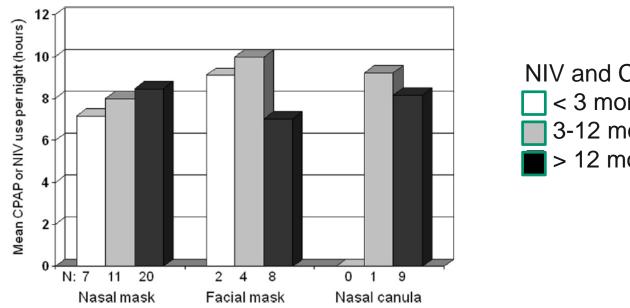
Contents lists available at ScienceDirect

Sleep Medicine

journal homepage: www.elsevier.com/locate/sleep

Original Article

Continuous positive airway pressure and noninvasive ventilation adherence in children



Adriana Ramirez ^{a,b}, Sonia Khirani ^{b,c}, Sabrina Aloui ^b, Vincent Delord ^d, Jean-Christian Borel ^{e,f}, Jean-Louis Pépin ^{f,g}, Brigitte Fauroux ^{b,h,i,*}

	Total population $(N = 62)$	Nasal mask (n = 38)	Facial mask (<i>n</i> = 14)	Nasal cannula (n = 10)	P value
Underlying disease (n, %)					
OSA	51 (82%)	33	14	4	
Lung disease	5 (8%)	4	0	1	
Neuromuscular disease	6 (10%)	1	0	5	
Gender (female/male)	26/36	12/26	9/5	5/5	
Age (y)	10.0 ± 4.7	$7.6 \pm 4.0^{\S}$	11.8 ± 4.6	15.0 ± 3.0	<.001
Weight (kg)	31.0 ± 21.0	25.6 ± 20.5§	41.9 ± 16.5	47.0 ± 13.4	<.001
CPAP and NIV adherence over the last month					
Average use per night (h:min)	8:17 ± 2:30	8:17 ± 2:16	8:12 ± 3:17	8:23 ± 2:44	.858
Number of patients using treatment >8 h/night $(n, \%)$	45 (72%)	25 (65%)	12 (86%)	8 (80%)	.183
Average nights use (n)	26 ± 5	27 ± 4	23 ± 8	28 ± 7	.122
Nocturnal gas exchange with CPAP or NIV					
Mean SpO ₂ (%)	97 ± 2	97 ± 2	97 ± 3	97 ± 2	.985
Minimal SpO ₂ (%)	91 ± 2	91 ± 4	92 ± 2	90 ± 4	.328
% of night time with a SpO ₂ <90% (%)	0.3 ± 1.3	0.5 ± 1.7	0.0 ± 0.0	0.0 ± 0.0	.233
4% Desaturation index (events/h)	4 ± 5	5 ± 7	3 ± 3	4 ± 3	.936
Mean PtcCO ₂ (mmHg)	39 ± 5	39 ± 5	38 ± 3	41 ± 7	.270
Maximal PtcCO ₂ (mmHg)	45 ± 5	45 ± 5	42 ± 4	48 ± 5*	.020
Percent of night time with a PtcCO ₂ >50 mmHg (%)	1.4 ± 6.3	0.4 ± 2.0	0.0 ± 0.0	8.1 ± 15.2 [#]	.016

NIV and CPAP adherence according to the interface

	Age < 10 y			Age > 10 y		
	Nasal mask (<i>n</i> = 30)	Facial mask (n = 5)	Nasal cannula (n = 0)	Nasal mask (n = 8)	Facial mask (n = 9)	Nasal cannula (n = 10)
Average use per night (h:min/night)	8:14 ± 2:17	07:50 ± 3:43	_	08:27 ± 2:23	8:25 ± 3:01	08:23 ± 2:38
Number of patients using CPAP or NIV >8 h/night (n, %)	20 (66%)	4 (80%)	_	6 (75%)	8 (88%)	8 (80%)
Average number of nights use over the last month (n)	27 ± 4	22 ± 9	_	28 ± 4	24 ± 7	28 ± 4
Number of patients using CPAP or NIV <3 h/night (n, %)	1 (3%)	1 (20%)	_	0	1 (11%)	1 (10%)

NIV and CPAP duration

< 3 months

3-12 months

> 12 months

Ramirez et al. Sleep Med 2013;14:1290

Conclusion

- The choice of the interface (+ headgear) is of paramount importance for the success of NIV in children
- Important improvements have been made:
 - nasal interfaces for infants
 - minimal contact interfaces (nasal prongs)
- Improvements can be made
 - headgears
 - nasal prongs and nasobuccal masks for young children

A well tolerated interface + ventilator is the key of success

