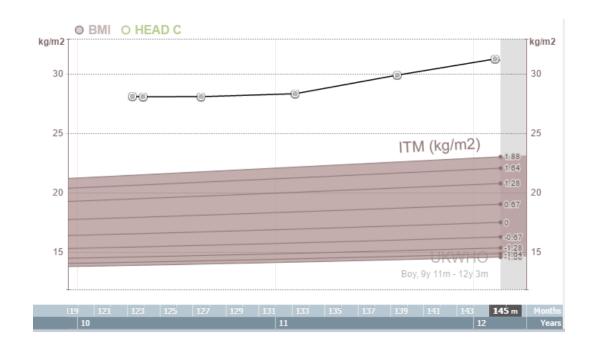
CPAP clinical cases: children and adolescents

Uros Krivec


Unit for pulmonary diseases
University children's hospital Ljubljana, Slovenia

A boy that "snores louder than his father"

Philip

- 12-yr-old boy with severe obesity
- BW 78.4 kg (>95th p, Z +3.0)
- BMI 31.3 kg/m2 (>95th p, Z +3.1)
- "Snores louder than his father"
- Tired at all times

Philip

Overnight polygraphy

Mean SpO2 93%
Minimal SpO2 79%
Time spent with SpO2 <90%: 14%
AHI 37 / h
ODI 23 / h

Morning capillary blood gases: pH 7.43, PCO2 44 mm Hg, HCO3 28 mmol/l

Diagnosis

- Obstructive sleep apnea syndrome (?)
- Obesity hypoventilation syndrome (?)

Obesity hypoventilation syndrome (OHS)

Pediatric OHS diagnosis

Definition based on consensus and expert opinion:

- Obesity (BMI >30 kg/m2) or BMI >95th percentile forage and gender or weight >95th percentile for age
- 2. Daytime hypercapnia (PaCO2 >45 mmHg)
- 3. Absence of known neurological, cardiac or pulmonary causes of hypoventilation

Prerequisite for OHS diagnosis

- Sleep study (poly(somno)graphy) to establish SDB and
- 2. Daytime PaCO2 to establish hypercapnia

Witmans, M et al. Section 10: Obesity hypoventilation inchildren, Canadian Journal of Respiratory, Critical Care, and Sleep Medicine 2018;2(1): 75-77 Mokhlesi B et al. Am J Respir Crit Care Med. 2019;200(3):e6-e24

Philip

Overnight polygraphy

Mean SpO2 93%

Minimal SpO2 79%

Time spent with SpO2 <90%: 14%

AHI 37 / h

ODI 23 / h

Morning capillary blood gases: pH 7.43, PCO2 44 mm Hg, HCO3 28 mmol/l

Diagnosis

- Obstructive sleep apnea syndrome
- Obesity hypoventilation syndrome

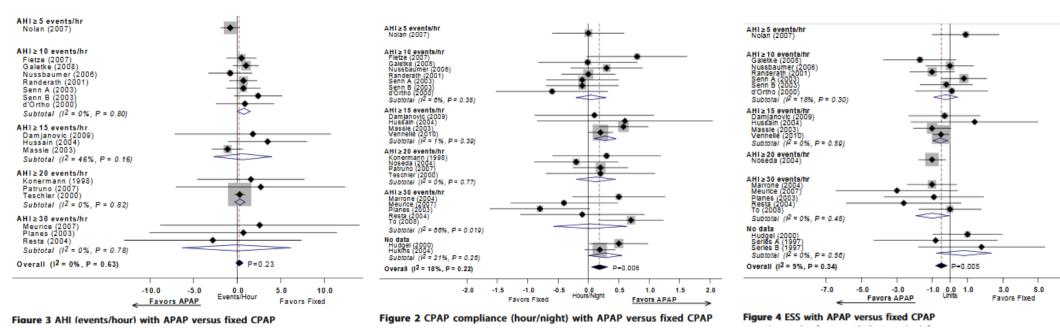
Interventions

- Enrolment in a multidisciplinary weight control program
- Plan for weight loss and maintenance
- Life-style changes (exercise and nutrition help)
- ENT Adenotonsillectomy (?)
- Bariatric surgery (?)
- Repeat sleep study with PCO2 monitoring

Respiratory support CPAP (?)
NIV (?)

CPAP

Respiratory support


- Appropriate interface
- Choice of device fixed CAPA auto-titrating PAP
- Start CPAP level
 4 cm H20, gradual increased to the highest tolerated level
- Titration under poly(somno)graphic and PCO2 monitoring

Assessment of response

- Sleep study in 3 months
- Compliance (!)

Auto-titrating versus fixed continuous positive airway pressure for the treatment of obstructive sleep apnea: a systematic review with meta-analyses

- Clinical importance of statistically significant differences is unclear.
- Choice of device may be supported by: patient preference, specific reasons for non-compliance and cost.

CPAP - assessment of response

Sleep study after 3 months

Mean SpO2 96%

Minimal SpO2 88%

Time spent with SpO2 <90%: 3%

AHI 7 / h

ODI 3 / h

Time spent with PtcCO2 >50 mm Hg: 0%

Peak PtcCO2: 52 mm Hg

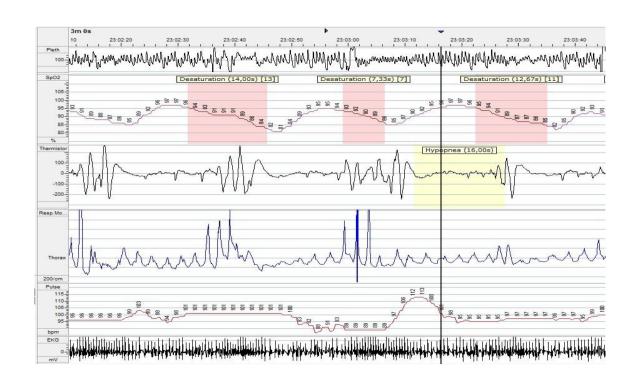
Morning capillary blood gases:

pH 7.42, PCO2 41 mm Hg,

HCO₃ 25 mmol/l

Switch to NIV needed?

Consider switching from CPAP to NIV if:


- Periods with SpO2 <80% for ≥10 min
- Persistent hypopnea and RERA
- Rise of PtcCO2 of ≥10 mm Hg during REM sleep or rise in diurnal PaCO2 of ≥10 mm Hg (if starting PaCO2 >55 mm Hg)
- CPAP intolerance

A boy with cerebral palsy and nosy breathing

lan

- 16-yr-old boy with cerebral palsy (GMFCS level V)
- Rattling day and night "He never clears his airway"
- Parents concerned about long breathing pauses during sleep
- Serval times admitted to regional hospital for minor respiratory infections
- In hospital additional oxygen needed only at night

lan

Overnight polygraphy

Mean SpO2 92%

Minimal SpO2 74%

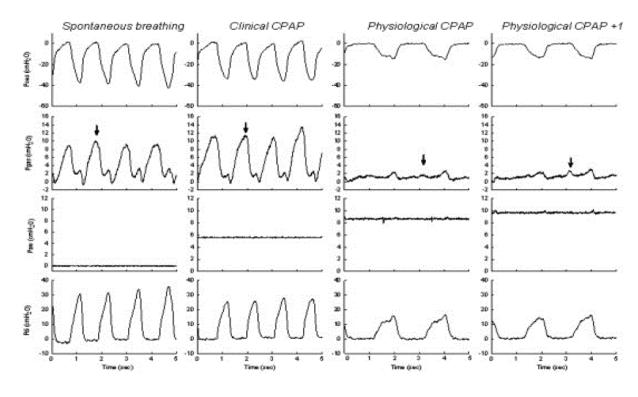
Time spent with SpO2 <90%: 19%

AHI 38 / h

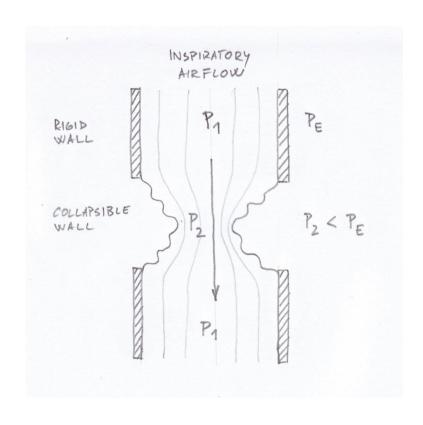
ODI 21 / h

Morning capillary blood gases pH 7.36, PCO2 43 mm Hg, HCO3 28 mmol/l

lan


Drug induced sleep study (DISE)

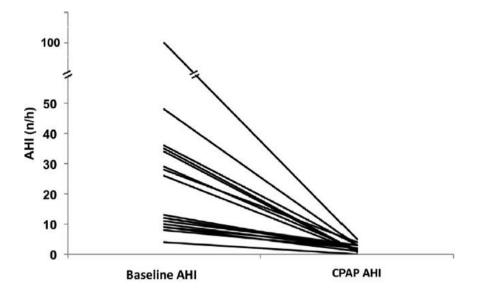
Initiating CPAP


- Appropriate interface
- Choice of device according to manufacturers' recommendations (minimal weight)
- Start CPAP level:

4 cm H_2 0, gradual increased to the highest tolerated level (8.5 \pm 1.0)

Khirani S et. al. Crit Care. 2013;17(4):R167

CPAP



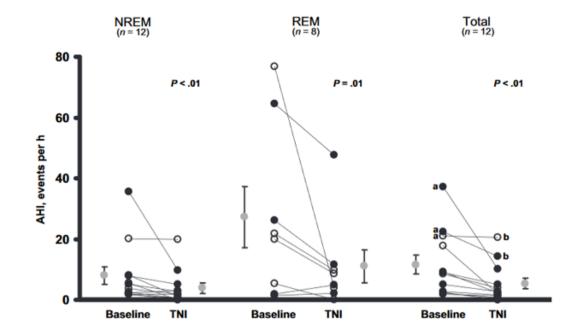
Initiating CPAP

Pediatric Pulmonology. 2018;1-7.

Outpatient initiation of long-term continuous positive airway pressure in children

Alessandro Amaddeo MD, PhD^{1,2,3} | Annick Frapin MSN¹ | Samira Touil BSc¹ | Sonia Khirani PhD^{1,4} | Lucie Griffon MD¹ | Brigitte Fauroux MD, PhD^{1,2,3}

- Right approach
- Cartoons, a booklet explaining CPAP, teddy bear with a CPAP device, ...


No CPAP tolerance

Pediatrics. 2009 July; 124(1): 179-188. doi:10.1542/peds.2008-2824.

Effect of a High-Flow Open Nasal Cannula System on Obstructive Sleep Apnea in Children

Brian McGinley, MD^a, Ann Halbower, MD^b, Alan R. Schwartz, MD^c, Philip L. Smith, MD^c, Susheel P. Patil, MD, PhD^c, and Hartmut Schneider, MD, PhD^c

No CPAP tolerance

Sleep Medicine

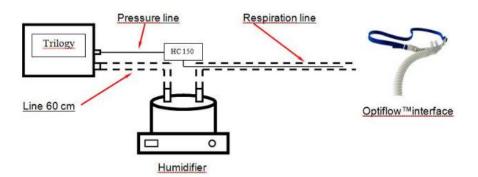
Volume 44, April 2018, Pages 1-3

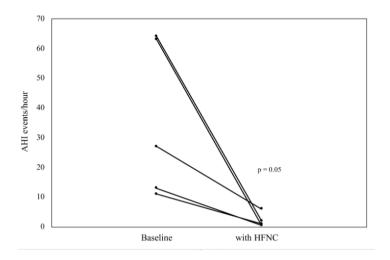
Brief Communication

The Optiflow™ interface for chronic CPAP use in children

C. Overbergh ^a, S. Installe ^a, A. Boudewyns ^b, K. Van Hoorenbeeck ^{a, c}, S.L. Verhulst ^{a, c} A 🖾

Sleep Medicine


Volume 63, November 2019, Pages 24-28



Original Article

High-flow nasal cannula for children not compliant with continuous positive airway pressure

Alessandro Amaddeo ^{a, b} $\stackrel{>}{\sim}$ $\stackrel{\boxtimes}{\sim}$, Sonia Khirani ^{a, b, c}, Annick Frapin ^a, Theo Teng ^a, Lucie Griffon ^{a, b}, Brigitte Fauroux ^{a,}

Thank you for your attention! Questions?