

# Swallowing and speaking with NIV

### **Hélène Prigent**

Service de physiologie et d'explorations fonctionnelles et UVAD – GHU APHP Université Paris Saclay - site Raymond Poincaré - Garches UMR1179 « End-i-Cap » - Inserm – UVSQ - Université Paris Saclay UFR santé Simone Veil - – UVSQ - Université Paris Saclay







UNIVERSITE PARIS-SACLAY

As already emphasized, NIV is preferred over invasive ventilation, especially for patients with neuromuscular or skeletal disorders who require noncontinuous ventilation because of ease of administration, preservation of upper airway function, enhanced quality of life, and lower cost. Even patients with severely weakened or paralyzed respiratory muscles whose time off the ventilator is negligible may be treated with NIV.70 However, invasive ventilation should be considered in patients who have persistent symptomatic hypoventilation despite repeated trials of NIV. Further, patients with more rapidly progressive neuromuscular syndromes that impair upper airway function, such as the Guillain-Barré syndrome, are usually treated with invasive ventilation when ventilatory support is indicated. For all patients, the decision to switch from noninvasive to invasive ventilation should be individual-

ized and take patient and pra as environmental resources i

### Make Chest 2008

### Recommendation

- NIV is the primary
- thoracic disease patients with CRF.
- The most important criteria for the advent of long-term NIV are hypercapnia in combination with the typical symptoms of ventilatory insufficiency, and the reduction in quality of life.
- For symptoms of hypoventilation in the absence of hypercapnia, a somnological examination should take place.
- Patients with severe, restrictive ventilatory dysfunction in the absence of manifest hypercapnia must be closely monitored.

# = 1st-line ventilatoin treatment

=> NON INVASIVE VENTILATION

ACCP 1998 Finder AJRCCM 2004 nce de consensus - Chest 1999 Conférence de consensus – Rev Mal Respir 2006 ecommandations HAS – 2006 Make Chest 2008

BTS – 2015

### Assisted ventilation

L'apparition d'un déficit ventilatoire chronique justifie la

mise en place d'une ventilation mécanique au long cours des-

tinée à suppléer partiellement ou totalement les muscles respi-

ratoires défaillants. La méthode proposée en première

intention est une ventilation non invasive (VNI). Ce type de

ventilation est à distinguer des hyperinsufflations périodiques

ou IPPB (intermittent positive pressure breathing), parfois pro-

MNM sont basées sur des critères établis lors de conférences

de consensus et/ou sur des avis d'experts. Le critère majeur

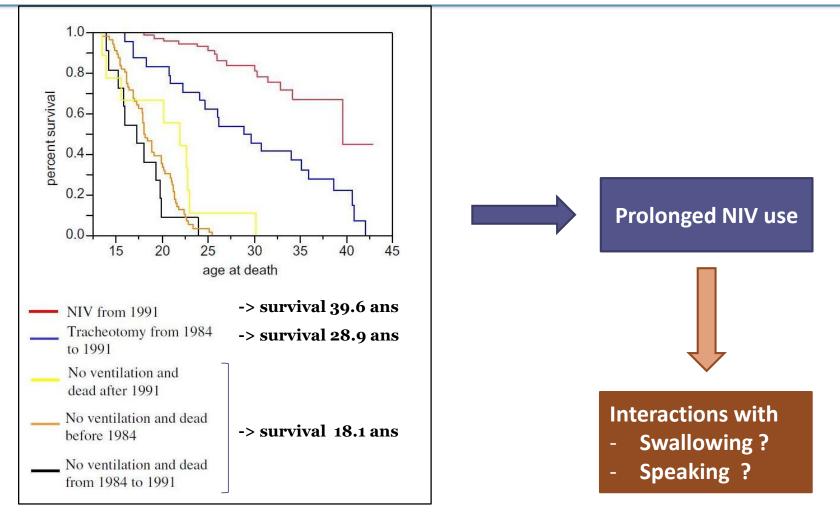
d'initiation d'une VNI est l'existence d'une hypercapnie

diurne, même modérée (PaCO<sub>2</sub> > 45 mmHg). D'autres cri-

tères, plus précoces, ont été proposés, et comportent les

symptômes d'hypoventilation alvéolaire nocturne (céphalées

Les indications de la VNI chez les patients atteints de


posées dans le cadre de la rééducation respiratoire [1].

- Children with NMW resulting in symptomatic nocturnal hypoventilation or daytime hypercapnia should be supported with NIV. [C]
- ►A non-invasive approach should be considered in children needing daytime ventilation. [D]
- Clinical teams caring for children using home ventilators should become familiar with a small number of machines. For most children pressure-targeted machines work well and are simple to use. [√]

# Ø Neuromuscular Disorders

### **Duchenne muscular dystrophy: Survival by cardio-respiratory interventions**

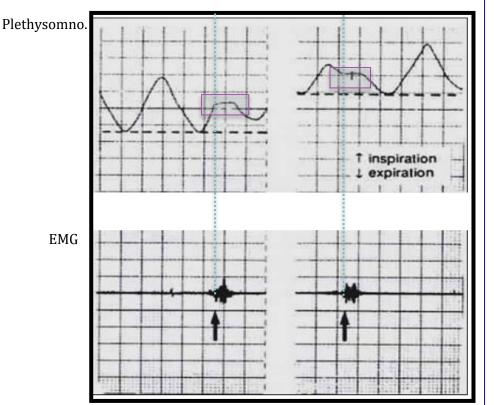
Yuka Ishikawa, Toshihiko Miura, Yukitoshi Ishikawa, Tomoyuki Aoyagi, Hitoko Ogata, Satoshi Hamada, Ryoji Minami *Neuromuscular Disorders 21 (2011) 47–51* 



# **Breathing and Swallowing Interaction**

# Avotre bonne santé, mes amis!...

# Normal Subject


Several successive phases with a critical and complex neurological control (cortex and TC)

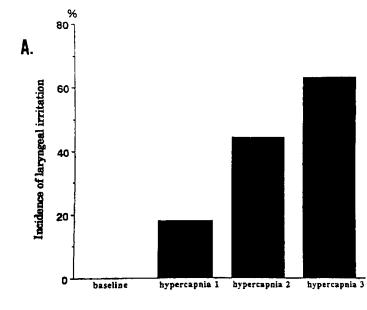
 $\Rightarrow$  Critical phase: Oro-pharyngeal

Both voluntary and reflex event with modifications of the respiratory cycle

# Breathing and swallowing Interaction

# **Normal Subject**




Interruption of respiratory cycle

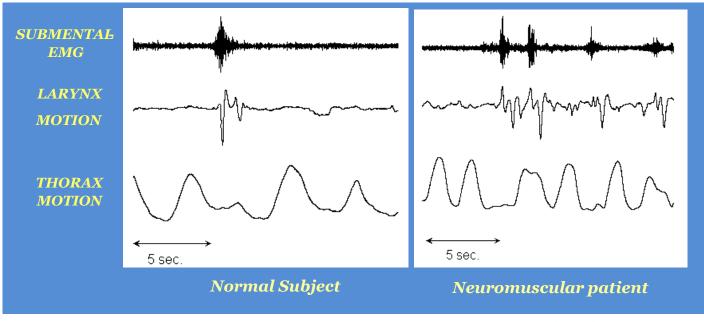
### => Swallowing apnea

Breathing resumes at the end of inspiration **or** during expiration

# Swallowing and respiratory failure

Hypercapnia increases laryngeal inspiration




Nishino, AJRCCM,1998

# Swallowing and respiratory failure

 Respiratory failure in NM disorders and in COPD may be associated with swallowing disorders and breathing swallowing interactions dysfunction

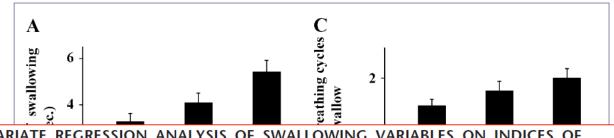
> Shaker et al, American Journal of Physiol 1992 Terzi et al, AJRCCM 2007 Gross et al, AJRCCM 2009 Terzi et al , Neuromuscul Disord 2010

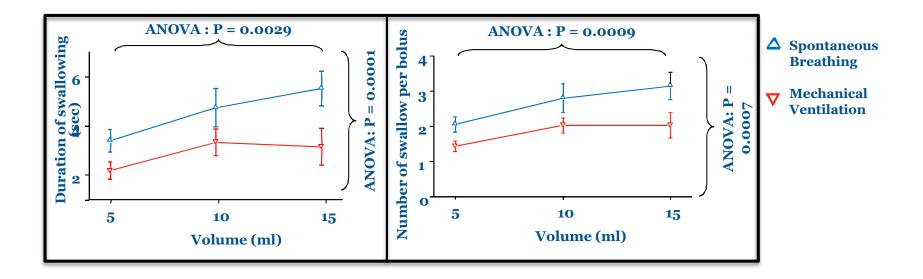
In NM disorders



Terzi et al, AJRCCM 2007

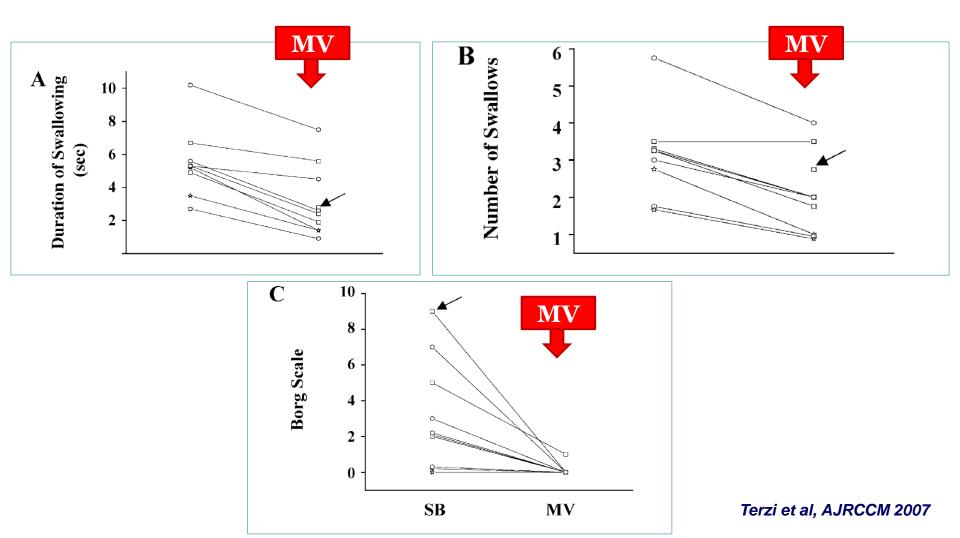
# Swallowing and respiratory failure

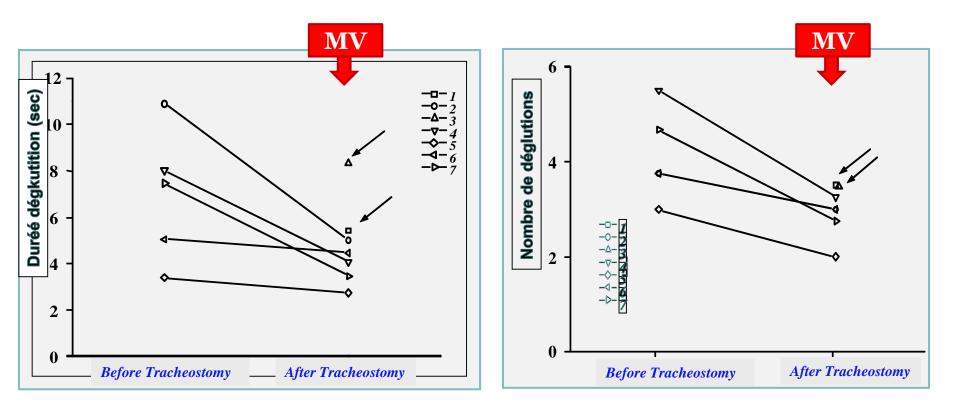




TABLE 3. UNIVARIATE REGRESSION ANALYSIS OF SWALLOWING VARIABLES ON INDICES OF LEVEL OF DISABILITY

|                    | Duration of Swallowing |                       |         | Numb        | er of Swalle   | ows     | Number of Breathing Cycles |                |         |  |  |
|--------------------|------------------------|-----------------------|---------|-------------|----------------|---------|----------------------------|----------------|---------|--|--|
|                    | Coefficient            | <i>R</i> <sup>2</sup> | p Value | Coefficient | R <sup>2</sup> | p Value | Coefficient                | R <sup>2</sup> | p Value |  |  |
| VC                 | -0.23                  | 0.05                  | 0.22    | -0.22       | 0.05           | 0.24    | -0.39                      | 0.15           | 0.03    |  |  |
| MIP                | -0.47                  | 0.22                  | 0.01    | -0.56       | 0.30           | 0.002   | -0.55                      | 0.30           | 0.002   |  |  |
| MEP                | -0.43                  | 0.19                  | 0.02    | -0.43       | 0.18           | 0.02    | -0.53                      | 0.28           | 0.004   |  |  |
| Pa <sub>co</sub> , | 0.22                   | 0.048                 | 0.29    | 0.181       | 0.03           | 0.39    | 0.24                       | 0.05           | 0.25    |  |  |
| AI                 | 0.26                   | 0.068                 | 0.17    | 0.241       | 0.05           | 0.20    | 0.35                       | 0.12           | 0.06    |  |  |
| Dysphagia          | 0.20                   | 0.04                  | 0.30    | 0.13        | 0.018          | 0.48    | 0.11                       | 0.012          | 0.56    |  |  |
|                    | Numl                   | 0                     |         |             | Swall<br>by e  | 0       |                            |                | _       |  |  |
|                    |                        |                       | 5 10    | 15          |                | 5       | 10                         | 15             |         |  |  |
|                    |                        | Volume (ml)           |         |             |                |         | Volume (ml)                |                |         |  |  |

**Comparing Normal Subjets - NMD** 

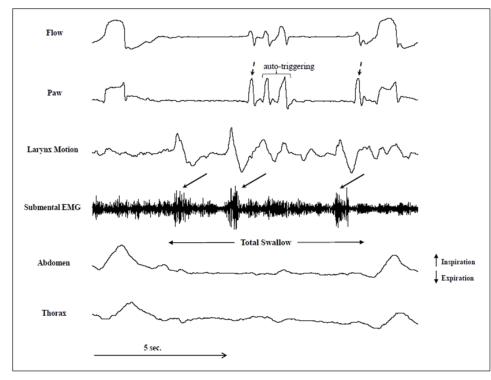

Terzi et al, AJRCCM 2007


 Tracheostomized NM patients improve their swallowing parameters improve when swallowing while ventilated

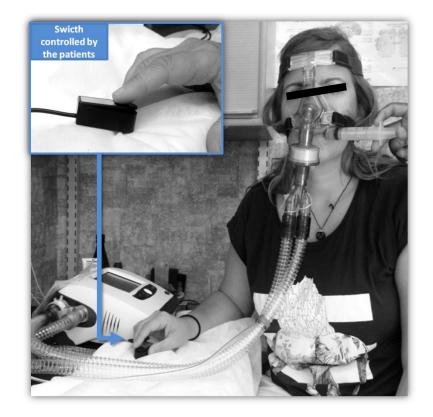


Terzi et al, AJRCCM 2007

### => 10 tracheostomized subjects



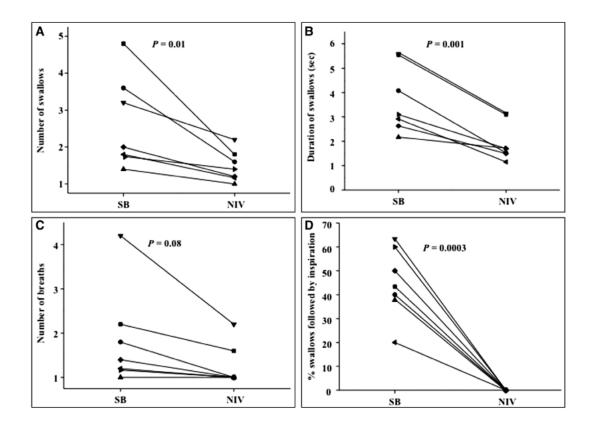




=> Reduction of swallowing fragmentation after tracheostomy while ventilated

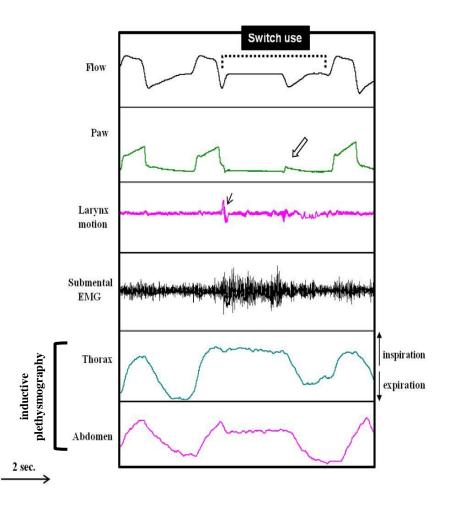
Terzi et al, Neuromuscular Disord 2010

Can NIV use improve breathing-swallowing interactions in NM patients with severe respiratory failure?



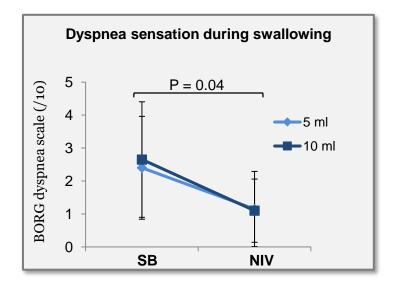

Terzi et al, CCM 2014




**Modified home ventilator** (Elysée 150, ResMed, San Diego, USA)

 $\Rightarrow$  Switch activation witholds ventilation

 COPD patients, during acute respiratory failure, improve breathingswallowing interactions under NIV

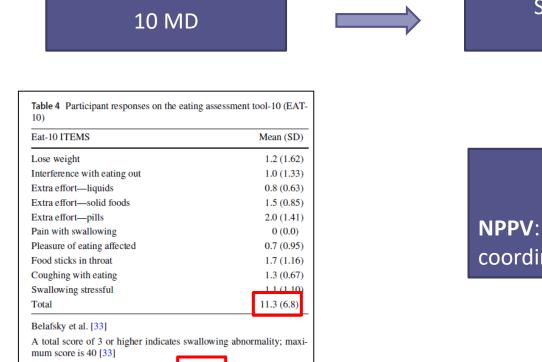



Terzi et al, CCM 2014



### NMD

- All patients found the device useful
- No episode of aspiration
- No episode of auto-triggering with device
- Swallowing comfort stable under NIV




|                                                                  | 5 ml-bolus |          | 10 ml-bolus |           | Yogurt    |            | ANOVA (p)      |                   |               |
|------------------------------------------------------------------|------------|----------|-------------|-----------|-----------|------------|----------------|-------------------|---------------|
|                                                                  | SB         | NIV      | SB          | NIV       | SB        | NIV        | Size<br>effect | Texture<br>effect | NIV<br>effect |
| Number of swallows<br>(per bolus)                                | 2.0±0.9    | 2.8±1.4  | 2.3±1.3     | 2.8±1.2   | 2.6 ±0.9  | 2.4±1.1    | 0.4            | 0.6               | 0.07          |
| Duration of swallowing<br>(sec)                                  | 5.4±4.6    | 4.6±3.4  | 7.1±4.5     | 5.9±3.4   | 7.1±4.9   | 5.8±4.2    | 0.04           | 0.1               | 0.1           |
| Swallowing<br>fragmentation<br>(respiratory events per<br>bolus) | 1.6±1.8    | 0.8±1.0  | 2.3±1.7     | 1.0±1.4   | 1.9±1.5   | 1.1±1.0    | 0.03           | 0.3               | 0.003         |
| % of swallows followed by an inspiration                         | 43.5±23.3  | 10.3±7.7 | 46.1±23.6   | 17.9±19.5 | 45.7±21.5 | 21.1 ±16.4 | 0.2            | 0.08              | <0.0001       |

|                                                                  | 5 ml-bolus |          | 10 ml-bolus |           | Yogurt    |            | ANOVA (p)      |                   |               |
|------------------------------------------------------------------|------------|----------|-------------|-----------|-----------|------------|----------------|-------------------|---------------|
|                                                                  | SB         | NIV      | SB          | NIV       | SB        | NIV        | Size<br>effect | Texture<br>effect | NIV<br>effect |
| Number of swallows<br>(per bolus)                                | 2.0±0.9    | 2.8±1.4  | 2.3±1.3     | 2.8±1.2   | 2.6 ±0.9  | 2.4±1.1    | 0.4            | 0.6               | 0.07          |
| Duration of swallowing<br>(sec)                                  | 5.4±4.6    | 4.6±3.4  | 7.1±4.5     | 5.9±3.4   | 7.1±4.9   | 5.8±4.2    | 0.04           | 0.1               | 0.1           |
| Swallowing<br>fragmentation<br>(respiratory events per<br>bolus) | 1.6±1.8    | 0.8±1.0  | 2.3±1.7     | 1.0±1.4   | 1.9±1.5   | 1.1±1.0    | 0.03           | 0.3               | 0.003         |
| % of swallows followed by an inspiration                         | 43.5±23.3  | 10.3±7.7 | 46.1±23.6   | 17.9±19.5 | 45.7±21.5 | 21.1 ±16.4 | 0.2            | 0.08              | <0.0001       |

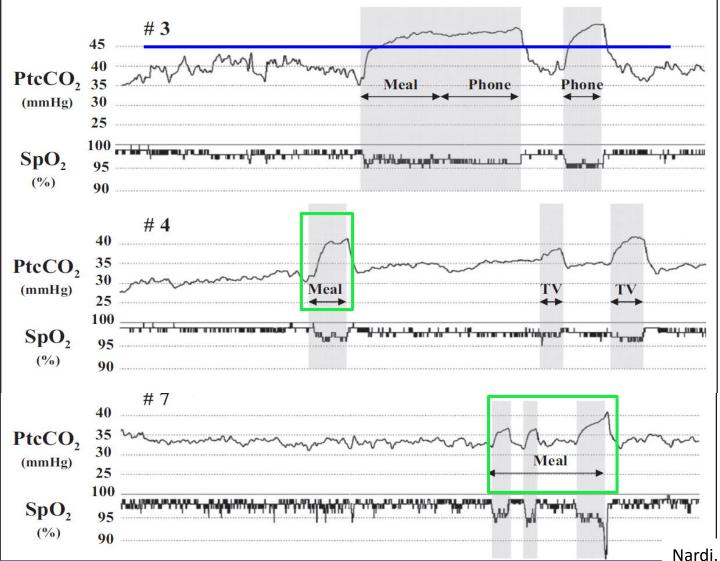
|                                                                  | 5 ml-bolus |          | 10 ml-bolus |           | Yogurt    |            | ANOVA (p)      |                   |               |
|------------------------------------------------------------------|------------|----------|-------------|-----------|-----------|------------|----------------|-------------------|---------------|
|                                                                  | SB         | NIV      | SB          | NIV       | SB        | NIV        | Size<br>effect | Texture<br>effect | NIV<br>effect |
| Number of swallows<br>(per bolus)                                | 2.0±0.9    | 2.8±1.4  | 2.3±1.3     | 2.8±1.2   | 2.6 ±0.9  | 2.4±1.1    | 0.4            | 0.6               | 0.07          |
| Duration of swallowing<br>(sec)                                  | 5.4±4.6    | 4.6±3.4  | 7.1±4.5     | 5.9±3.4   | 7.1±4.9   | 5.8±4.2    | 0.04           | 0.1               | 0.1           |
| Swallowing<br>fragmentation<br>(respiratory events per<br>bolus) | 1.6±1.8    | 0.8±1.0  | 2.3±1.7     | 1.0±1.4   | 1.9±1.5   | 1.1±1.0    | 0.03           | 0.3               | 0.003         |
| % of swallows<br>followed by an<br>inspiration                   | 3.5±23.3   | 10.3±7.7 | 46.1±23.6   | 17.9±19.5 | 45.7±21.5 | 21.1 ±16.4 | 0.2            | 0.08              | <0.0001       |

# But **without** adaptation:



The range of scores for participants vas 3–22

SD standard deviation

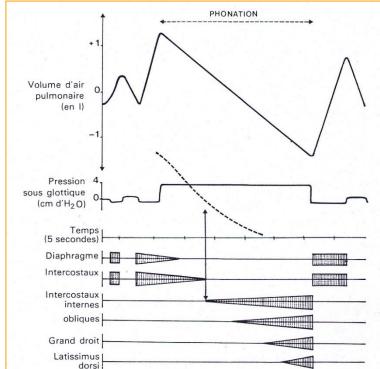

Swallowing evaluation MPV vs NPPV



### MPV > NPPV

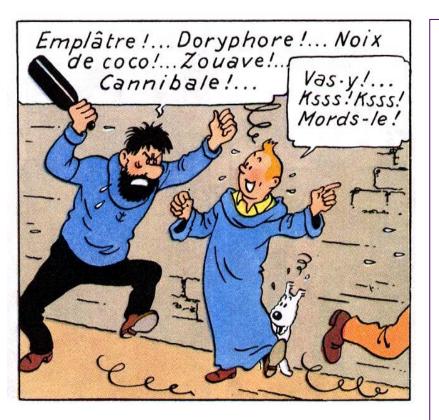
**NPPV**: required more attention to coordination

# But eating with MPV




Nardi. Chron Respir Dis 2016

# Phonation


• Requires precise neuro-motor coordination : laryngeal, pharyngo-bucco-labial, respiratory, postural muscles.

- Exemple of voluntary control of ventilation
- Modification of the respiratory cycle and of respiratory muscles involvement in order to maintain the desired vocal production



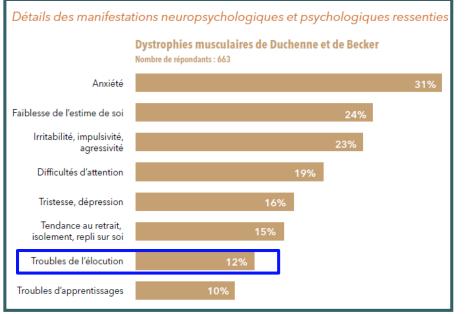
Draper, 1959

# Phonation and breathing interactions



# **Normal Subject**

- Expiratory event
- $\uparrow$  RR (TI  $\downarrow$  et TE  $\uparrow$   $\uparrow$ )
- ↑ tidal volume
- $\Rightarrow$   $\uparrow$  minute ventilation
- Alveolar Hyperventilation


# Phonation and NMD

- NMD may impair phonation quality:
  - UAW muscle dysfunction
  - Facial muscle failure
  - Macroglossia

 $\Rightarrow$  articulation difficulties  $\Rightarrow$  poor intelligibility

Respiratory failure?...

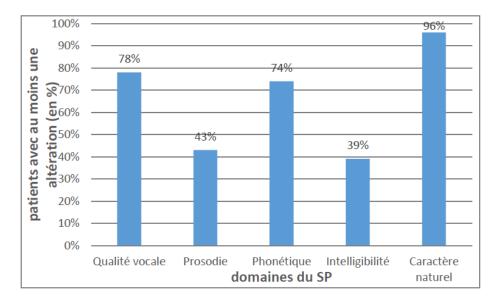
# Phonation and NMD





Draper et al, BMJ, 1960

• In NMDs:

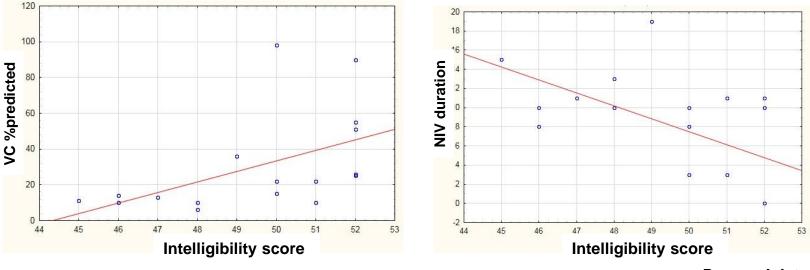

Decreased loudness and pitch Shortness of breath and speaking-related dyspnea

> Britton et al, Semin Speech Lang, 2016 Laakso et al, Int J Lang Commun Disord, 2011

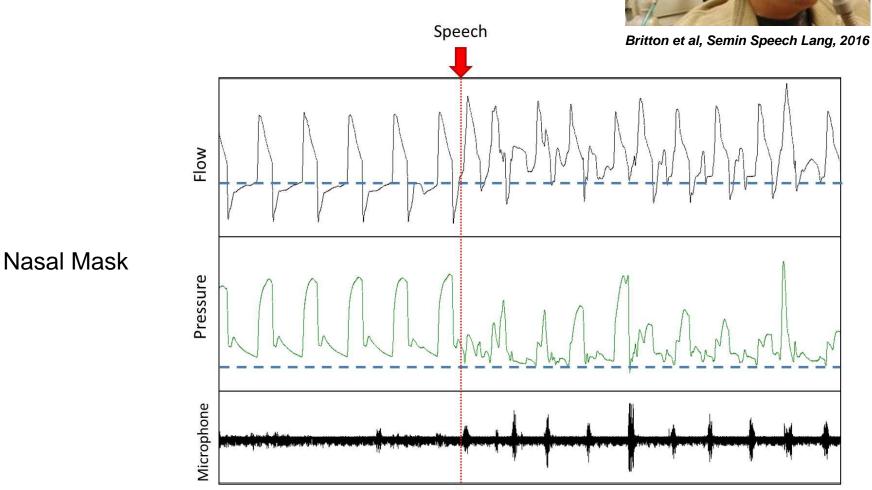


Octobre 2014

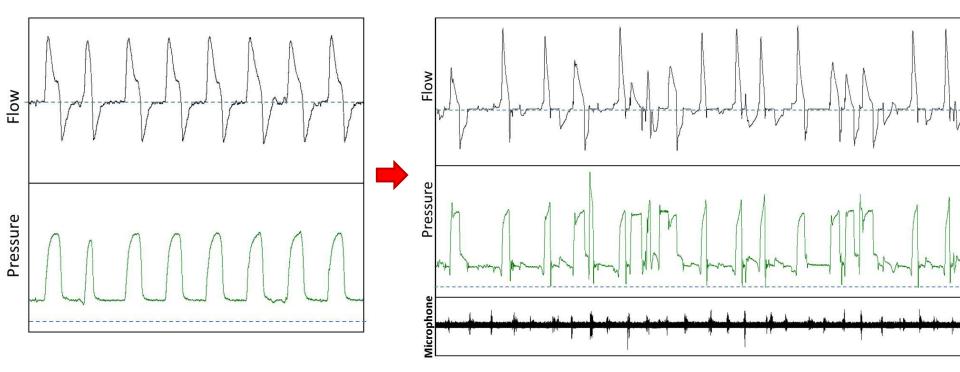
- 27 Duchenne and Becker dystrophies studied during speech in natural breathing
- $\Rightarrow$  VHI > 0 for 26/27, significantly altered in 26%
- $\Rightarrow$  Deterioration of perception score:




Personal data


# Voice quality and respiratory failure

19 Duchenne patients' speech during spontaneous breathing


⇒Inverse correlation between intelligibility and respiratory failure severity



Personal data







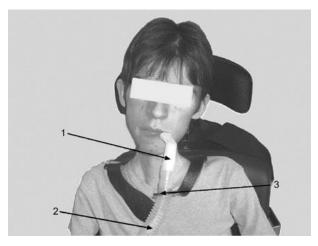
« It's like talking with someone plugging your nose »

With pressure controlled ventilation:

« When I try to talk, the air is leaking out of my mouth »

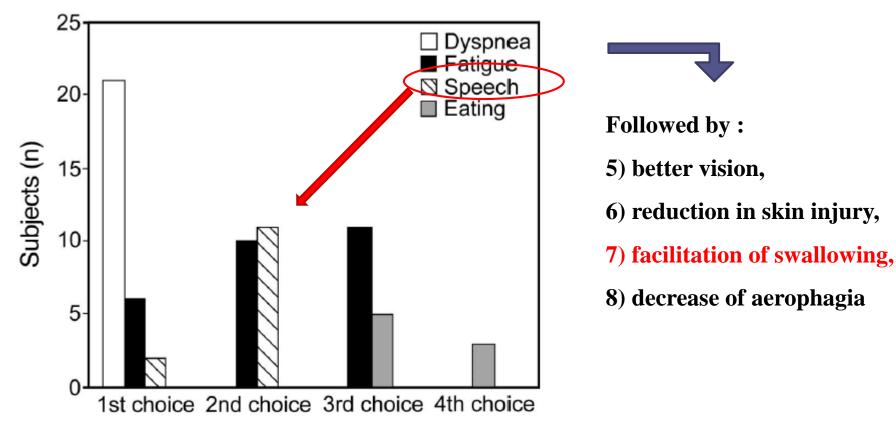
Britton et al, Semin Speech Lang, 2016 Britton et al, Am J Speech Lang Pathol, 2019

Adaptation of the interface for optimized phonation


### $\Rightarrow$ Mouthpiece ventilation

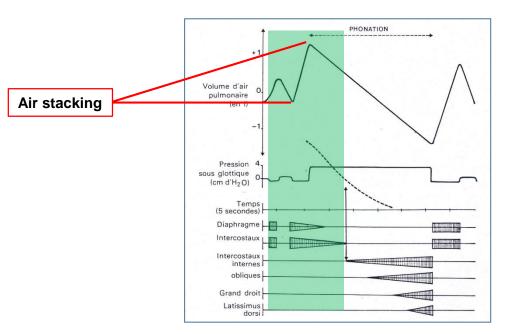


Britton et al, Semin Speech Lang, 2016




Britton et al, Am J Speech Lang Pathol, 2019

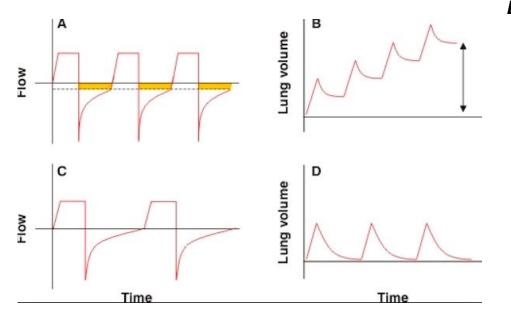



Michel Toussaint's team Belgium (ERJ 2006)

# Voice quality and NIV: interface choice Mouthpiece ventilation



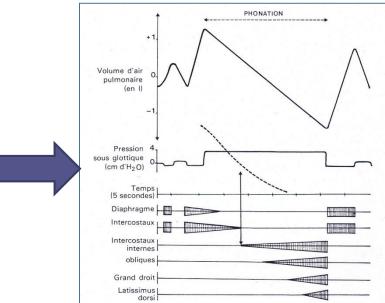
# Voice quality and NIV: interface choice Mouthpiece ventilation

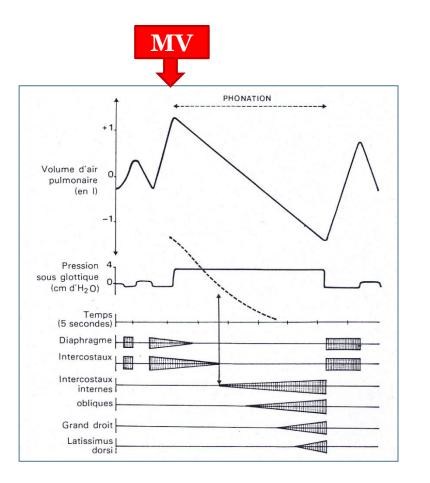

 With volume controlled-ventilation, patients can use « breath-stacking » to increase loudness.



Britton et al, Semin Speech Lang, 2016

# Voice quality and NIV: interface choice Mouthpiece ventilation


 With volume controlled-ventilation, patients can use « breath-stacking » to increase loudness.




Britton et al, Semin Speech Lang, 2016

• But with mouthpiece ventilation:

# Speech occurs during spontaneous breathing with severe respiratory failure

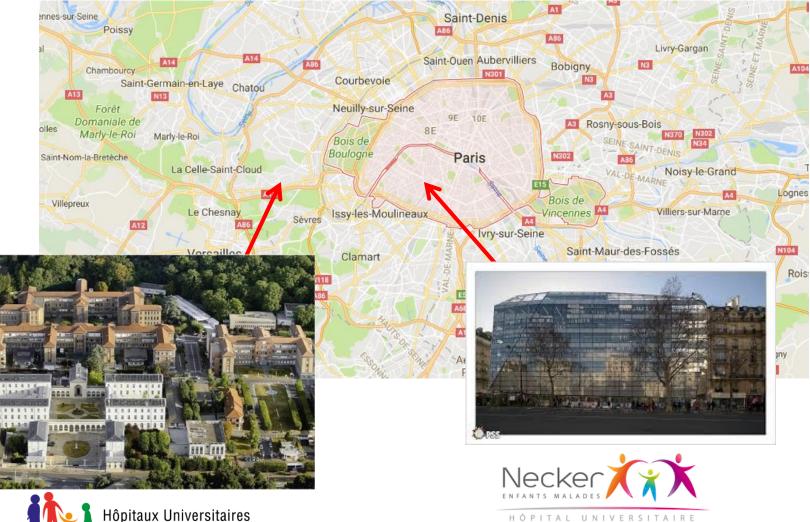






Personal data

- 10 NMD patients tested under NIV while speaking
- No improvement:
  - Speech parameters
  - Respiratory and speech comfort
    - ?
- Interaction of nasal mask with voice quality
- Insufficient use of NIV for speech support
- Patients too severe to manage the increased inspiratory volume


# Conclusion

- Swallowing may improve with NIV in NMD patients with severe respiratory failure (but NPPV would require specific adaptations)
- Mouthpiece ventilation ensures independant speech as patients may discontinue ventilation
- Speech may be altered by respiratory failure but NIV does not yet provide support for quality improvement, except with breath stacking

## Thank you for your attention



### Thank you for your attention



Hôpitaux Universitaires Paris Ile-de-France Ouest

### Thank you for your attention





Non, rien de grave. Le capitaine va déjà beaucoup mieux...oui...non...ii s'est trouvé mal toutjuste après avoir bu un verre d'eau...





Hergé, 1960